105 research outputs found

    Hierarchical Metric Learning for Optical Remote Sensing Scene Categorization

    Full text link
    We address the problem of scene classification from optical remote sensing (RS) images based on the paradigm of hierarchical metric learning. Ideally, supervised metric learning strategies learn a projection from a set of training data points so as to minimize intra-class variance while maximizing inter-class separability to the class label space. However, standard metric learning techniques do not incorporate the class interaction information in learning the transformation matrix, which is often considered to be a bottleneck while dealing with fine-grained visual categories. As a remedy, we propose to organize the classes in a hierarchical fashion by exploring their visual similarities and subsequently learn separate distance metric transformations for the classes present at the non-leaf nodes of the tree. We employ an iterative max-margin clustering strategy to obtain the hierarchical organization of the classes. Experiment results obtained on the large-scale NWPU-RESISC45 and the popular UC-Merced datasets demonstrate the efficacy of the proposed hierarchical metric learning based RS scene recognition strategy in comparison to the standard approaches.Comment: Undergoing revision in GRS

    Information Seeking Behavior of Research Scholars of Vidyasagar University, West Bengal

    Get PDF
    The main objective of the study is to investigate the information seeking behavior of the research scholars of Vidyasagar University (VU), West Bengal. Besides, the study also intended to identify their information needs and awareness regarding the library services rendered by the central library of the university. Required data was collected from 100 researchers of the university through a structured questionnaire. Findings indicate that guidance in the use of library resources and services is necessary to help researchers to meet some of their information requirements. Most of the researchers avail library weekly (30%) and monthly(45%) and spend maximum of 0-2 hours with the main intention for preparing research, study journals , up-to-date knowledge etc. Most of the researchers depend on VU central library (27%) for information seeking and also collect information from other sources

    CMIR-NET : A Deep Learning Based Model For Cross-Modal Retrieval In Remote Sensing

    Get PDF
    We address the problem of cross-modal information retrieval in the domain of remote sensing. In particular, we are interested in two application scenarios: i) cross-modal retrieval between panchromatic (PAN) and multi-spectral imagery, and ii) multi-label image retrieval between very high resolution (VHR) images and speech based label annotations. Notice that these multi-modal retrieval scenarios are more challenging than the traditional uni-modal retrieval approaches given the inherent differences in distributions between the modalities. However, with the growing availability of multi-source remote sensing data and the scarcity of enough semantic annotations, the task of multi-modal retrieval has recently become extremely important. In this regard, we propose a novel deep neural network based architecture which is considered to learn a discriminative shared feature space for all the input modalities, suitable for semantically coherent information retrieval. Extensive experiments are carried out on the benchmark large-scale PAN - multi-spectral DSRSID dataset and the multi-label UC-Merced dataset. Together with the Merced dataset, we generate a corpus of speech signals corresponding to the labels. Superior performance with respect to the current state-of-the-art is observed in all the cases

    Prototypical quadruplet for few-shot class incremental learning

    Full text link
    Many modern computer vision algorithms suffer from two major bottlenecks: scarcity of data and learning new tasks incrementally. While training the model with new batches of data the model looses it's ability to classify the previous data judiciously which is termed as catastrophic forgetting. Conventional methods have tried to mitigate catastrophic forgetting of the previously learned data while the training at the current session has been compromised. The state-of-the-art generative replay based approaches use complicated structures such as generative adversarial network (GAN) to deal with catastrophic forgetting. Additionally, training a GAN with few samples may lead to instability. In this work, we present a novel method to deal with these two major hurdles. Our method identifies a better embedding space with an improved contrasting loss to make classification more robust. Moreover, our approach is able to retain previously acquired knowledge in the embedding space even when trained with new classes. We update previous session class prototypes while training in such a way that it is able to represent the true class mean. This is of prime importance as our classification rule is based on the nearest class mean classification strategy. We have demonstrated our results by showing that the embedding space remains intact after training the model with new classes. We showed that our method preformed better than the existing state-of-the-art algorithms in terms of accuracy across different sessions

    GOPro: Generate and Optimize Prompts in CLIP using Self-Supervised Learning

    Full text link
    Large-scale foundation models, such as CLIP, have demonstrated remarkable success in visual recognition tasks by embedding images in a semantically rich space. Self-supervised learning (SSL) has also shown promise in improving visual recognition by learning invariant features. However, the combination of CLIP with SSL is found to face challenges due to the multi-task framework that blends CLIP's contrastive loss and SSL's loss, including difficulties with loss weighting and inconsistency among different views of images in CLIP's output space. To overcome these challenges, we propose a prompt learning-based model called GOPro, which is a unified framework that ensures similarity between various augmented views of input images in a shared image-text embedding space, using a pair of learnable image and text projectors atop CLIP, to promote invariance and generalizability. To automatically learn such prompts, we leverage the visual content and style primitives extracted from pre-trained CLIP and adapt them to the target task. In addition to CLIP's cross-domain contrastive loss, we introduce a visual contrastive loss and a novel prompt consistency loss, considering the different views of the images. GOPro is trained end-to-end on all three loss objectives, combining the strengths of CLIP and SSL in a principled manner. Empirical evaluations demonstrate that GOPro outperforms the state-of-the-art prompting techniques on three challenging domain generalization tasks across multiple benchmarks by a significant margin. Our code is available at https://github.com/mainaksingha01/GOPro.Comment: Accepted at BMVC 202

    Pharmacognostical, physiochemical and phytochemical evaluation of leaf, stem and root of orchid Dendrobium ochreatum

    Get PDF
    The present work was aimed to carry out pharmacognosical and phytochemical evaluation of individual root, stem, and leaves of orchid “Dendrobium ochreatum.” The plant was sun dried and was grounded to fine powder using mechanical grinder followed by sieving. The fine powder was collected and subjected to different pharmacognostical studies like fluorescence analysis under uv light at different wavelength. Physiochemical parameters were also evaluated of the dried plant parts like ash values, loss on drying. Each part of plant like root, stem and leaves were separated and subjected to extraction using soxhletion using different polarity solvents i,e hexane, chloroform, ethanol in gradient elution technique. All total nine plant extracts were obtained, phytochemical screening revealed the presence of important phytoconstituents like alkaloid, glycoside, saponins etc whereas only chloroform extracts of stem exhibited the presence of steroid/phytosterol

    CognitiveCNN: Mimicking Human Cognitive Models to resolve Texture-Shape Bias

    Full text link
    Recent works demonstrate the texture bias in Convolutional Neural Networks (CNNs), conflicting with early works claiming that networks identify objects using shape. It is commonly believed that the cost function forces the network to take a greedy route to increase accuracy using texture, failing to explore any global statistics. We propose a novel intuitive architecture, namely CognitiveCNN, inspired from feature integration theory in psychology to utilise human-interpretable feature like shape, texture, edges etc. to reconstruct, and classify the image. We define two metrics, namely TIC and RIC to quantify the importance of each stream using attention maps. We introduce a regulariser which ensures that the contribution of each feature is same for any task, as it is for reconstruction; and perform experiments to show the resulting boost in accuracy and robustness besides imparting explainability. Lastly, we adapt these ideas to conventional CNNs and propose Augmented Cognitive CNN to achieve superior performance in object recognition.Comment: 5 Pages; LaTeX; Published at ICLR 2020 Workshop on Bridging AI and Cognitive Scienc
    • …
    corecore